BÀI TOÁN SIEĐU TĨNH 103 

Một phần của tài liệu Giáo trình môn sức bền vật liệu (Trang 53)

Cũng như trong câc băi tơn về kĩo, nĩn vă xoắn, ởđđy ta cũng gặp những băi tơn siíu tĩnh về uốn. Ð gii loi băi tơn năy ta phi thiết lp thím phương trình biến dng

Ví dụ:

Cho dầm chịu lực như hình vẽ. Ðể tính nội lực trong dầm ta phải biết câc phản lực ở ngăm vă gối tựa. Như vậy sốẩn số phải tìm lă 3, nhưng ta chỉ thiết lập được 2 phương trình cđn bằng nín chưa giải được băi tơn.

Trong trường hợp đang xĩt, dựa văo điều kiện độ võng tại B của dầm bằng 0 để lập phương trình biến dạng: yB = 0

Ðộ võng B do phản lực RB vă do tải trọng phđn bố q

Trang 104 - 177

Dựa văo phương phâp đồ tơn ta chọn dầm giả tạo vă tải trọng phđn bố giả tạo như hình vẽ. Momen giả tạo tại B do tải trọng qgt gđy nín lă :

Trị số của momen giả tạo đĩ chính lă độ võng tại B. Với điều kiện độ võng bằng khơng ta cĩ phương trình:

Khi đê cĩ RB ta dễ dăng vẽđược biểu đồ nội lực của dầm

CÁC VÂN ĐEĂ SINH VIEĐN CAĂN NAĨM VỮNG Ở CHƯƠNG 7

1. Tính tốn được đoơ võng cụa các daăm đơn giạn theo phương pháp thođng sơ ban đaău.

2. Thuoơc lịng các đoơ võng cụa các daăm: đơn giạn, cođng sođn… và tại trĩng tác dúng: phađn bơ, taơp trung… thường gaịp.

3. Vaơn dúng thành tháo bài tốn coơng tác dúng đeơ giại quyêt vân đeă đoơ võng tái 1 vị trí nào đĩ.

4. Phađn tích được các đieău kieơn biên dáng tương thích đeơ giại quyêt các bài tốn sieđu tĩnh.

Trang 105 - 177

CHƯƠNG 8 : XOAĨN THUAĂN TÚY 8.1. KHÁI NIEƠM

8.1.1. Định nghĩa

Thanh chịu xoaĩn thuaăn túy khi tređn các maịt caĩt ngang chư cĩ thành phaăn noơi lực là momen xoaĩn Mz, tác dúng trong maịt phẳng thẳng vuođng gĩc với trúc thanh (xOy).

Thực tê, cĩ nhieău câu kieơn trong cơ khí, xađy dựng chịu xoaĩn như các trúc truyeăn đoơng, kêt câu chịu lực khođng gian, daăm đỡ ođ vaíng....

8.1.2. Bieơu đoă Noơi Lực

Bieơu đoă noơi lực cụa thanh chịu xoaĩn cũng được vẽ baỉng cách xác định noơi lực theo phương pháp maịt caĩt và đieău kieơn cađn baỉng tĩnh hĩc: ∑M z/ =0.

a) Xét 1 trúc truyeăn đoơng chịu tác dúng cụa 3 ngău lực xoaĩn.

Thực hieơn maịt caĩt tái 1 vị trí trong đốn AB, xét đieău kieơn cađn baỉng phaăn t rái, cĩ theơ thây raỉng đeơ cađn baỉng ngối lực thì ngău lực xoaĩn tái tiêt dieơn đang xét phại cĩ noơi lực là momen xoaĩn baỉng và ngược chieău neđn chư caăn dùng 1 phương trình cađn baỉng:

/ 0

M z

∑ = .

Trang 106 - 177

Quy ước dâu: momen xoaĩn noơi lực dương khi nhìn vào maịt caĩt thây Mz quay theo

chieău kim đoăng hoă và ngược lái là ađm.

Xét 1 thanh chịu tác dúng cụa 2 ngău lực, áp dúng nguyeđn lý coơng tác dúng, phađn tích thành toơng cụa 2 trường hợp tác dúng rieđng lẽ. Tređn moêi trường hợp, ngối lực là 1 ngău lực gađy xoaĩn, do đĩ noơi lực trong thanh cũng là momen xoaĩn, giá trị cụa noơi lực phại baỉng giá trị cụa ngối lực và ngược chieău.

Cĩ theơ nhaơn xét dâu cụa noơi lực dương khi nhìn vào đaău thanh thây ngối lực quay thuaơn chieău kim đoăng hoă và ngược lái.

8.2. XOAĨN THANH THẲNG TIÊT DIEƠN TRỊN

8.2.1. Thí nghieơm và nhaơn xét

Lây 1 thanh tiêt dieơn thẳng trịn, tređn maịt ngồi cĩ vách những đường song song và những đường trịn thẳng gĩc với trúc tao thành lưới ođ vuođng. Tác dúng leđn 2 đaău thanh hai ngău lực xoaĩn ngược chieău, ta thây trúc thanh văn thẳng, chieău dài thanh khođng đoơi, những đường trịn thẳng gĩc với trúc văn phẳng và thẳng gĩc với trúc, những đường song song với trúc thành những đướng xoaĩn ơc, lưới ođ vuođng thành lưới bình hành.

Từ các nhaơn xét tređn, cĩ theơ đưa ra các giạ thiêt làm neăn tạng cho vieơc thiêt laơp cođng thức tính tốn như sau:

Trang 107 - 177

8.2.2. Các giạ thiêt

a./ Gi thuyết v mt ct ngang phng

Trước vă sau khi bị biến dạng mặt cắt ngang vẫn giữ phẳng vă vuơng gĩc với trục thanh (tức lă (z = 0)

b./ Gi thuyết v bân kính ca thanh

Trước vă sau khi thanh bị biến dạng bân kính của của mặt cắt ngang vẫn thẳng vă cĩ độ dăi khơng đổi (tức ( cĩ phương vuơng gĩc R)

c./ Gi thuyết v chiu dăi ca thanh

Trước vă sau khi thanh bị biến dạng, chiều dăi của thanh cũng như khoảng câch giữa hai mặt cắt ngang bất kỳ lă khơng đổi ((z = 0 ; utt = 0)

d./ Gi thuyết v câc th dc

Trong quâ trình thanh bị biến dạng, câc thớ dọc khơng ĩp lín nhau vă cũng khơng tâch xa nhau ((x = (y = 0 )

8.2.3. Cođng thức ứng suât tiêp

Cĩ theơ nhaơn thây theo các giạ thiêt tređn đađy, biên dáng cụa thanh chịu xoaĩn thuaăn túy chư là sự xoay tương đơi giữa các maịt caĩt ngang quanh trúc.

Đeơ xét biên dáng xoaĩn cụa 1 phađn tơ tái 1 đieơm bât kì bán kính ρtrong thanh, ta tách phađn tơ baỉng ba caịp maịt caĩt như sau:

- Hai maịt phẳng caĩt (1-1) và (2-2) thẳng gĩc với trúc cách nhau đốn dz. - Hai maịt phẳng caĩt chứa trúc hợp với nhau moơt gĩc dα

- Hai maịt caĩt trú đoăng trúc z ( trúc thanh) bán kính ρ và ρ+dρ.

Theo các giạ thiêt, trong quá trình biên dáng, so với các đieơm E, F, G, H thuoơc maịt caĩt (1-1); các đieơm A, B, C, D cụa phađn tơ tređn maịt caĩt (2-2) dịch chuyeơn đên A’, B’, C’,

Trang 108 - 177

D’ phại naỉm tređn cung trịn bán kính ρ và ρ+dρ, đoăng thời OA’B’ và OC’D’ phại thẳng hàng.

Gĩi dϕ là gĩc giữa hai đường thẳng OAB và OA’B’, đĩ là gĩc xoay cụa maịt caĩt (2-2) so với (1-1) quanh trúc z, gĩi là gĩc xoaĩn tương đơi giữa hai tiêt dieơn lađn caơn cách nahu dz.

Đơi với phađn tơ đang xét, gĩc A’EA bieơu dieên sự thay đoơi gĩc vuođng cụa maịt beđn phađn tơ gĩi là biên dáng trượt ( gĩc trượt) γ cụa phađn tơ.

Ta cĩ: tan AA' d

EA dz

ϕ γ γ≈ ≈ =ρ

Theo giạ thiêt b), vì khođng cĩ biên dáng dài theo phương dĩc trúc, phương bán kính và phương vuođng gĩc với bán kính neđn khođng cĩ ứng suât pháp tác dúng leđn các maịt cụa phađn tơ. Theo giạ thiêt a) các gĩc vuođng cụa maịt CDHG và mađt BAEF khođng thay đoơi neđn khođng cĩ ứng suât tiêp hướng tađm tređn maịt A, B, C, D. do giạ thiêt b), mĩi bán kính văn thẳng neđn khođng cĩ ứng suât tiêp hướng tađm tređn maịt A, B, E, F.

Như vaơy, tređn maịt caĩt ngang cụa thanh chịu xoaĩn thuaăn túy chư toăn tái ứng suât tiêp theo phương vuođng gĩc bán kính, gĩi là τρ và phađn tơ đang xét ở tráng thái trượt thuaăn túy.

Aùp dúng định luaơt Hooke veă trượt cho phađn tơ này, ta cĩ:

G ρ τ = γ Từ đĩ ta cĩ: G d dz ρ ϕ τ = ρ

Gĩi dA là moơt dieơn tích vođ cùng bé bao quanh đieơm đang xét, thì τρdA là lực tiêp tuyên tác dúng tređn dieơn tích đĩ và τρdAρ là mođmen lực cụa lực τρdA đơi với tađm O. toơng các momen này phại baỉng Mz, cho neđn ta viêt:

z A M =∫τρdAρ và z A d M G dA dz ϕ ρ ρ =∫ Vì Gd dz ϕ

là haỉng sơ đơi với mĩi đieơm thuoơc maịt caĩt A, neđn ta cĩ theơ đưa ra ngồi dâu tích phađn, khi đĩ tích phađn 2

A

dA

ρ

∫ chính là momen quán tính cực Ip cụa maịt caĩt ngang đơi với tađm O.

z p A d d M G dA G I dz dz ϕ ϕ ρ ρ =∫ =

Trang 109 - 177 Từ đĩ ta cĩ: z p M d dz GI ϕ =

. Cĩ theơ thây raỉng d

dz

ϕ

chính là gĩc xoaĩn tređn 1 đơn vị chieău dài, gĩi là gĩc xoaĩn tỷ đơi (rad/m). đaịt d

dz ϕ θ= , ta cĩ: z p M GI θ = và z p M I ρ τ = ρ

Ưùng suât tiêp thay đoơi theo qui luaơt baơc nhât, baỉng khođng tái tađm O và cực đái tái những đieơm tređn chu vi.

Bieơu đoă ứng suât tiêp tái mĩi đieơm tređn maịt caĩt ngang, ứng suât tiêp đơi ứng tređn các maịt caĩt chứa trúc theơ hieơn tređn hình vẽ.

Thay ρ=R, ta cĩ max z p M R I τ = Đaịt Ip W R

ρ = : momen chơng xoaĩn cụa maịt caĩt ngang. + Với tiêt dieơn trịn đaịc và đường kính D: 3

0.2 p I W D R ρ = ≈

+ Với tiêt dieơn trịn roêng và đường kính D, d: 3 4

0.2 (1 ) p I W D R ρ = ≈ −η

suy ra: max z p

M W

τ =

8.2.4. Cođng thức tính biên dáng khi xoaĩn

Ta cĩ: z

p

M

d dz

GI

ϕ= , là gĩc xoaĩn tương đơi giữa hai maịt caĩt cách nhau dz, do đĩ gĩc xoaĩn tương đơi giữa hai maịt caĩt cách moơt đốn baỉng chieău dài L cụa thanh:

0 L z p M dz GI ϕ=∫ Trang 110 - 177

Khi thanh goăm nhieău đốn, moêi đốn cĩ z p

M

GI là haỉng sơ, thì toơng quát: ( z ) i i p M GI ϕ=∑ .

Gĩc xoaĩn ϕ được qui ước dương theo chieău dương cụa momen noơi lực và ngược lái.

8.2.5. Đieău kieơn beăn – đieău kieơn cứng

Đeơ thanh chịu xoaĩn khođng bị phá hối do beăn phại đạm bạo đieău kieơn beăn:

0

max [ ]

n

τ

τ ≤ τ = .

Đơi với thanh chịu xoaĩn, ngồi đieău kieơn beăn cịn phại đạm bạo đieău kieơn cứng như sau: θmax≤[ ]θ .

Cĩ theơ tính tốn thanh chịu xoaĩn theo ba bài tốn cơ bạn như sau: - kieơm tra beăn, cứng (bài tốn kieơm tra)

- xác định tại tĩng cho phép.

- xác định đường kính (bài tốn thiêt kê)

8.3. XOAĨN THANH THẲNG TIÊT DIEƠN CHỮ NHAƠT

Thí ngheơm xoaĩn thanh tiêt dieơn chữ nhaơt cho thây những đường song song và thẳng với trúc khođng cịn song song và thẳng gĩc với trúc, tiêt dieơn bị veđnh, giạ thiêt maịt caĩt phẳng khođng theơ áp dúng được. Do đĩ khođng theơ dựa tređn các giạ thiêt mà đơn giạn hĩa bài tốn được.

Nghieđn cứu xoaĩn thanh tiêt dieơn chữ nhaơt baỉng lý thuyêt đàn hoăi, người ta thu được các kêt quạ như sau:

+ Tređn maịt caĩt ngang chư cĩ ứng suât tiêp, tái tađm và các gĩc, ứng suât tiêp baỉng khođng. Tređn hai trúc đơi xứng cụa tiêt dieơn, ứng suât thay đoơi theo đường cong, taíng daăn từ tađm và đát

Trang 111 - 177

giá trị cực đái tái trung đieơm các cánh. Tái trung đieơm cánh dài, ứng suât tiêp đát giá trị lớn nhât

max

τ ; tái trung đieơm cánh ngaĩn, ứng suât nhỏ hơn τmax là τ1.

+ Phađn bơ ứng suât tiêp tái các đieơm tređn các trúc đơi xứng, các cánh tiêt dieơn và các đường chéo được bieơu dieơn ở hình dưới

a. Ưùng suât tiêp: max Mz2; 1 max

hb

τ τ γτ

α

= =

b. Gĩc xoaĩn tương đơi: Mz3

hb

θ β =

Trong đĩ: α β γ, , : các heơ sơ phú thuoơc tỷ sơ (cánh dài/cánh ngaĩn) được cho trong bạng tra.

8.4. TÍNH LỊ XO XOAĨN HÌNH TRÚ CĨ BƯỚC NGAĨN

Lị xo lă một chi tiết được sử dụng rất rộng rêi trong kỹ thuật, ví dụ: trong câc bộ phận giảm chấn, câc thiết bị bảo hiểm...

Tham khạo theđm trong các tài lieơu tham khạo.

8.5. BÀI TĨAN XOAĨN SIEĐU TĨNH

Khi tính về xoắn, cũng như khi tính về kĩo nĩn, ta cĩ thể gặp những băi tơn siíu tĩnh. Ðĩ lă những băi tơn cĩ sốẩn số lực nhiều hơn số phương trình cđn bằng. Ðể giải băi tơn năy ta phải lập thím phương trình biến dạng

Trang 112 - 177

Ví dụ: một thanh bị ngăm chặt ở hai đầu, chịu tâc dụng bởi câc momen xoắn ngoại lực

1

MM2. Xâc định momen xoắn ngoại lực tại hai đầu A, B

Giải:

Phương trình cđn bằng:

Hai đầu thanh bị ngăm chặt, do đĩ gĩc xoắn tương đối ϕAB= 0 (đĩ lă phương trình biến dạng). Bđy giờ ta tưởng tượng bỏ qua một trong hai ngăm, ví dụ ngăm B vă thay thế bởi momen phản lực MB . Ðể tính gĩc xoay tương đối ϕAB ta dùng phương phâp cộng tâc dụng. Gĩc xoay tại B do câc momen M1, M2 vă MB gđy ra đồng thời sẽ bằng tổng câc gĩc xoay do từng momen một gđy ra:

Vậy gĩc xoay tổng cộng lă:

Trang 113 - 177

Dựa văo hai phương trình (1) vă (2) ta tìm được MAMB . Cĩ được MAMB ta cĩ thể xâc định được nội lực vă biến dạng của thanh.

CÁC VÂN ĐEĂ SINH VIEĐN CAĂN NAĨM VỮNG Ở CHƯƠNG 8

1. Naĩm đực khái nieơm xoaĩn thuaăn túy

2. Phađn bieơt tráng thái xoaĩn thuaăn túy với trượt thuaăn tùy, uơn thuaăn túy. 3. Cođng thức tính tốn gĩc xoay tồn thanh.

4. Tính tốn xoaĩn thanh thẳng tiêt dieơn trịn.

5. Vaơn dúng thành tháo bài tốn coơng tác dúng đeơ giại quyêt vân đeă biên dáng tái 1 vị trí nào đĩ.

6. Phađn tích được các đieău kieơn biên dáng tương thích đeơ giại quyêt các bài tốn sieđu tĩnh.

Trang 114 - 177

CHƯƠNG 9 : THANH CHỊU LỰC PHỨC TÁP 9.1. KHÁI NIEƠM

9.1.1. Định nghĩa

Thanh chịu lực phức táp khi tređn các maịt caĩt ngang cĩ tác dúng đoăng thời cụa toơ hợp các thành phaăn noơi lực như lực dĩc Nz. mođmen uơn Mx, My, mođmen xoaĩn Mz (H.9.1) Khi moơt thanh chịu lực phức táp, ạnh hưởng cụa lực caĩt đên đoơ beăn rât nhỏ so với các thành phaăn noơi lực khác neđn trong tính tốn khođng tính đên lực caĩt.

9.1.2. Phám vi nghieđn cứu

Trong chương này chư xét những thanh chịu lực phức táp mà trong quá trình chịu lực cịn thỏa mãn đieău kieơn sử dúng được nguyeđn lý coơng tác dúng, đĩ là:

Vaơt lieơu phại đàn hoăi tuyeơt đơi và tuađn theo định luaơt Hooke.

Chuyeơn vị và biên dáng phại bé đeơ cĩ theơ tính tređn sơ đoă khođng biên dáng (sơ đoă chưa cĩ tác dúng cụa lực)

Trang 115 - 177

Nguyeđn lý coơng tác dúng phát bieơu như sau: moơt đái lượng do nhieău nguyeđn nhađn tác dúng đoăng thời gađy ra thì baỉng toơng đái lượng đĩ do từng nguyeđn nhađn rieđng lẹ.

Nhờ đĩ, chuyeơn vị hay ứng suât do nhieău thành phaăn noơi lực tác dúng đoăng thời được phađn tích thành toơng Chuyeơn vị hay ứng suât do từng thành phaăn noơi lực tác dúng rieđng lẹ. Maịt khác cĩ theơ sử dúng các kêt quạ từ các bài tốn chịu lực đơn giạn như thanh chịu kéo hay nén đúng tađm, thanh chịu uơn phẳng hay thanh chịu xoaĩn thuaăn túy.

Đeơ vieơc nghieđn cứu được thuaơn lợi, các bài tốn chịu lực phức táp được xét theo thứ tự từ đơn giạn đên phức táp là: uơn xieđn, uơn coơng kéo (hay nén), kéo hay nén leơch tađm, uơn coơng xoaĩn và chịu lực toơng quát.

9.2. UƠN XIEĐN

9.2.1. Định nghĩa:

Thanh chịu uơn xieđn khi tređn mĩi maịt caĩt ngang chư cĩ 2 thành phaăn noơi lực la mođmen uơn Mx và mođmen uơn My tác dúng trong các maịt phẳng đơi xứng yozxoz

(H.10.2)

Theo cơ hĩc lý thuyêt, ta cĩ theơ bieêu dieên mođmen Mx và My baỉng các véctơ thẳng gĩc với maịt phẳng tác dúng cụa chúng, tức là tređn các trúc x và y,hợp 2 mođmen này là

mođmen toơng Mu bieơu dieên bởi véctơ toơng hình hĩc cụa 2 véctơ Mx, My. Mu tác dúng trong maịt phẳng voz, maịt phẳng này thẳng gĩc với trúc u (chứa véctơ Mu) và chứa trúc thanh (H10.3)

Vaơy cĩ theơ nĩi : thanh chịu uơn xieđn khi tređn các maịt caĩt ngang chư cĩ 1 mođmen uơn Mu tác dúng trong maịt phẳng chứa trúc mà khođng trùng với maịt phẳng đơi xứng nào.

Như tređn hình H.9.3, ta cĩ Mu = Mx2+My2

Trang 116 - 177

Đaịc bieơt với thanh tiêt dieơn trịn, mĩi đường kính đeău là trúc đơi xứng, neđn bât kì maịt phẳng chứa trúc thanh nào cũng là maịt phẳng đơi xứng. Do đĩ thanh tiêt dieơn trịn luođn luođn chư chịu uơn phẳng.

9.2.2. Ưùng suât pháp

Tái 1 đieơm A(x,y) tređn tiêt dieơn, nêu chư cĩ Mz tác dúng thì Jx gađy ra ứng suât pháp do uơn thuaăn túy trong maịt phẳng yOz là: x

z x M y

I

σ =

Tương tự nêu chư cĩ My tác dúng thì ứng suât pháp do uơn thuaăn túy trong maịt

phẳng yOz là: y z y M

Một phần của tài liệu Giáo trình môn sức bền vật liệu (Trang 53)

Tải bản đầy đủ (PDF)

(90 trang)